Euclidean farthest-point Voronoi diagram of a digital edge

نویسنده

  • Tristan Roussillon
چکیده

A digital edge is a digitization of a straight segment joining two points of integer coordinates. Such a digital set may be analytically defined by the rational slope of the straight segment. We show in this paper that the convex hull, the Euclidean farthest-point Voronoi diagram as well as the dual farthest-point Delaunay triangulation of a digital edge can be fully described by the continued fraction expansion of its slope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The L∞ (L1) Farthest Line-Segment Voronoi Diagram

We present structural properties of the farthest line-segment Voronoi diagram in the piecewise linear L∞ and L1 metrics, which are computationally simpler than the standard Euclidean distance and very well suited for VLSI applications. We introduce the farthest line-segment hull, a closed polygonal curve that characterizes the regions of the farthest line-segment Voronoi diagram, and is related...

متن کامل

Minimum Enclosing Circle of a Set of Static Points with Dynamic Weight from One Free Point

Given a set S of n static points and a free point p in the Euclidean plane, we study a new variation of the minimum enclosing circle problem, in which a dynamic weight that equals to the reciprocal of the distance from the free point p to the undetermined circle center is included. In this work, we prove the optimal solution of the new problem is unique and lies on the boundary of the farthest-...

متن کامل

Realizing Farthest-Point Voronoi Diagrams

1 The farthest-point Voronoi diagram of a set of n sites 2 is a tree with n leaves. We investigate whether arbi3 trary trees can be realized as farthest-point Voronoi di4 agrams. Given an abstract ordered tree T with n leaves 5 and prescribed edge lengths, we produce a set of n sites 6 S in O(n) time such that the farthest-point Voronoi di7 agram of S represents T . We generalize this algorithm...

متن کامل

The Farthest Point Delaunay Triangulation Minimizes Angles

We show that the planar dual to the Euclidean farthest point Voronoi diagram for the set of vertices of a convex polygon has the lexicographic minimum possible sequence of triangle angles, sorted from sharpest to least sharp. As a consequence, the sharpest angle determined by three vertices of a convex polygon can be found in linear time.

متن کامل

On the Farthest Line-Segment Voronoi Diagram

The farthest line-segment Voronoi diagram shows properties surprisingly different than the farthest point Voronoi diagram: Voronoi regions may be disconnected and they are not characterized by convexhull properties. In this paper we introduce the farthest line-segment hull, a cyclic structure that relates to the farthest line-segment Voronoi diagram similarly to the way an ordinary convex hull ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2015